

Focus on collembolans: their role in ecosystem and their uses bioindicators of soil quality – Case stadies from Europe and Campania region

Biodi ersity probioindicators in monitoring and management of contaminated soils Portici, 4-7 June 2019

Lucia Santorufo, Giulia Maisto

01

Summary

03

С.

04

Characteristics of collembolans Origin

Taxonomy Anatomy Die⁺ Repro ¹uction

Cology of collembolans Distribution Soil distribution Role in ecosystem

Collembolans as bioindicators Land uses Agricultural practices Contaminants Functional approach

Conclusions

Bellinger, P.F., Christiansen, K.A. & Janssens, F. 1996-2019. Checklist of the Collembola of the World. http://www.collembola.org Characteristics of collembolans: Anatomy

Ecology of collembolans

Bioindication

Conclusions

Small 1-5 mm (min. 0.12; max.17 mm)

Wingless hexapods with antennae always present

Characteristics of collembolans: Anatomy

Ecology of collembolans

Bioindication

Conclusions

Ventral ٤ vbe

Small 1-5 mm (min. 0.12; max.17 mm)

Wingless hexapods with antennae always present

Furcula

Springtail: when furcula is released it springs the organisms into the air

Collembola (Lubbock 1870):

colla (Latin): glue

Source: Bellinger, P.F., Christiansen, K.A. & Janssens, F. 1996-2019. Checklist of the Collembola of the World. http://www.collembola.org

Characteristics of collembolans: Identification

Ecology of collembolans

Bioindication

Conclusions

Source: Bellinger, P.F., Christiansen, K.A. & Janssens, F. 1996-2019. Checklist of the Collembola of the World. http://www.collembola.org

Ecology of collembolans

Bioindication

Conclusions

Collembola DIET

Commonly they consume fungal hyphae and spores

BUT they can switch their diet if other resources become available

Ecology of collembolans

Bioindication

Conclusions

Source: collembole.fr By Philippe Garcelon

Ecology of collembolans

Bioindication

Conclusions

Characteristics of collembolans: Reproduction

Ecology of collembolans

Bioindication

Conclusions

Controlled by Wolbachia bacteria

Sc xua

Parthenogenesis

- Sexual dimorphism or not
- Indirect spurm transfer
- Deposition of spermatophore

Bellinger, P.F., Christiansen, K.A. & Janssens, F. 1996-2019. Checklist of the Collembola of the World. http://www.collembola.org

Ecology of collembolans

Ecology of collembolans: **Distribution**

Bioindication

Conclusions

Distribution

□ Soil dwelling, wet or damp surroundings

- □ Worldwide distributed
- □ 10⁴-10⁵ ind. m⁻²
- □ 60 to 80 species in forests
- □ 15 to 30 species in agricultural areas

Ecology of collembolans: Soil distribution

Bioindication

Conclusions

Epi-edaphic

Hemi-edaphic

Eu-edaphic

Ecology of collembolans: habitat preferences

Bioindication

Conclusions

Factcrs influencing Distribution

Ecology of collembolans: habitat preferences

Bioindication

Conclusions

Ecology of collembolans: habitat preferences

Bioindication

Conclusions

pH (3-8)

Journal of Applied Ecology 1997, **34**, 217–232 The development of a 'non. dicator system for soil acidity based on arthrop d pH references

NICO M. VAN S7 (AALEN nd LERMAN A. VERHOEF Department of Ecology and L. toxicology, V. je Universiteit, De Boelelaan 1087, 1081 HV Amsterdam, The Netherlands

Temperature (7-25°C)

Locomotor Yesper e of Folsomia candida (Collembola: Isotomidae) to Cooling Temperatures

G. Briteau 🖎, 🤉 Mac anley

Snviron Pental Intomology, Volume 41, Issue 4, 1 August 2012, Pages 916–924, http://doi.g/10.1603/EN12008

Ecology of collembolans: habitat preferences

Bioindication

Conclusions

pH (3-8)

Journal of Applied Ecology 1997, **34**, 217–232

The development of a bio anator system for soil acidity based on arthrop 1 pH oreferences

NICO M. VAN PAALEN nd HERMAN A. VERHOEF Department of Ecology and Proxicology, Vrije Universiteit, De Boelelaan 1087, 1081 HV Amsterdam, The Netherlands

Temperature (7-25°C)

Locometor Pesponse of Folsomia candida (Coller b/la: Isotomidae) to Cooling Temperatures

G. 🔉 piteau 🖎 P. MacKinley

viron. or .al Entomology, Volume 41, Issue 4, 1 August 2012, Pages 916–924, http://doi.org/10.1603/EN12008

Umidity (variable accurding the species)

Distribution and population dynamics of Collembola in relation to soil moisture

H. A. Verhoef and A. J. van Selm

Ecology of collembolans: habitat preferences

Bioindication

Conclusions

pH (3-8)

Journal of Applied Ecology 1997, **34**, 217–232

The development of a bio anator system for soil acidity based on arthrop 1 pH oreferences

NICO M. VAN , PAALEN nd HERMAN A. VERHOEF Department of Ecology and L toxicology, Vrije Universiteit, De Boelelaan 1087, 1081 HV Amsterdam, The Netherlands

Temperature (7-25°C)

Locometor Pesponse of Folsomia candida (Coller b/la: Isotomidae) to Cooling Temperatures

G. piteau 🖎 P. MacKinley

viron. or .al Entomology, Volume 41, Issue 4, 1 August 2012, Pages 916–924, http://doi.org/10.1603/EN12008

Umidity (variable accurding the species)

Distribution and population dynamics of Collembola in relation to soil moisture

H. A. Verhoef and A. J. van Selm

Tex ure (soils with high norosity)

Soil Tillage in Agroecosystems

Edited by Adel El Titi

Conembolans as bioindicators

Collembol, opti num habitat

Which change in collembolan community?

D soil abiotic and biotic properties always agree???

(E) CrossMark

Physico-chemical characteristics of topsoil for contrasted forest, agricultural, urban and industrial land uses in France

S. Joimel ^{a,b}, J. Cortet ^c, C.C. Jolivet ^d, N.P.A. Saby ^d, E.D. Chenot ^{a,b}, P. Branchu ^e, J.N. Consalès ^f, C. Lefort ^{a,b}, J.L. Morel ^{a,b}, C. Schwartz ^{a,b,*}

Sophie Joimel ^{a,b,c,*}, Christophe Schwartz ^{a,b}, Mickaël Hedde ^c, Sayuri Kiyota ^d, Paul Henning Krogh ^e, Johanne Nahmani ^d, Guénola Pérès ^{f,g}, Alan Vergnes ^d, Jérôme Cortet ^d

Sophie Joimel ^{a,b,c,*}, Christophe Schwartz ^{a,b}, Mickaël Hedde ^c, Sayuri Kiyota ^d, Paul Henning Krogh ^e, Johanne Nahmani ^d, Guénola Pérès ^{f,g}, Alan Vergnes ^d, Jérôme Cortet ^d

Ecotoxicological assessment of metal-polluted urban soils using bioassays with three soil invertebrates

Lucia Santorufo a.*, Cornelis A.M. Van Gestel^b, Giulia Maisto^a

Orthonychiurus pseudostachianus (collembola) as a toxicity test organism and selection of an ecotoxicological test battery to assess soil quality

Lucia Santorufo*, Rita Carotenuto, Annamaria Rocco, Fabiano De Luca Picione, Giulia Maisto

Ecology of collembolans

Bioindication: PAH contamination

Conclusions

I.C. Eom^{a,*}, C. Rast^b, A.M. Veber^b, P. Vasseur^{b,*}

Ecotoxicology and

Environmental Safety

www.elsevier.com/locate/ecoenv

Characteristics of
collembolansEcology of
collembolans

Bioindication: PAH contamination

Conclusions

Paumen et al., 2008 Chapter 6

Multi-generation exposure of the springtail *Folsomia candida* to phenanthrene: from dose-response relationships to threshold concentrations

Ecology of collembolans

Bioindication: Functional approach

Conclusions

Functional traits ccorganisms

Functional trait is any norphological, physiological or phenological feature measurable at the individual level, from the cell to the whole-organism level (Violle et al., 2007)

Lucia Santorufo $^{a,\,b,\,c,\,*},$ Jérôme Cortet d, Johanne Nahmani e, Céline Pernin f, Sandrine Salmon g, Audrey Pernot b, Jean Louis Morel $^{b,\,c},$ Giulia Maisto a

surrounding areas

Pedro Martins da Silva^{1,a,b,*}, Filipe Carvalho^{1,a,b}, Tara Dirilgen^c, Dorothy Stone^{d,e}, Rachel Creamer^e, Thomas Bolger^c, José Paulo Sousa^{a,b}

CrossMark

Pedro Martins da Silva^{1,a,b,*}, Filipe Carvalho^{1,a,b}, Tara Dirilgen^c, Dorothy Stone^{d,e}, Rachel Creamer^e, Thomas Bolger^c, José Paulo Sousa^{a,b}

Pedro Martins da Silva^{1,a,b,*}, Filipe Carvalho^{1,a,b}, Tara Dirilgen^c, Dorothy Stone^{d,e}, Rachel Creamer^e, Thomas Bolger^c, José Paulo Sousa^{a,b}

properties across an European transect

(E) CrossMark

Ecology of collembolans

Bioindication

Conclusions

Ecology of collembolans

Bioindication

Conclusions

Ecology of collembolans

Bioindication

Conclusions

Sensitivity of collembolans depends c their Inctional traits

Ecology of collembolans

Bioindication

Conclusions

Senstitivity of collembolans depends of them functional traits

Epi-cdaphic

Easily found in disturbed environments

Ecology of collembolans

Bioindication

Conclusions

Senstitivity of collembolans depends 5 then functional traits

Epi-cdaphic

Easily found in disturbed environments

Hemi-edaphic Sensitive to amount of organic matter

Ecology of collembolans

Bioindication

Conclusions

Senstitivity of collembolans depends 5 then functional traits

Epi-cdaphic

Easily found in disturbed environments

Hemi-edaphic Sensitive to amount of organic matter

Absent in very degraded soils